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Abstract
We investigate the formation of nanostructures in 2D strained alloys on face centered cubic
(111) surfaces by means of equilibrium Monte Carlo simulations. In the framework of an
off-lattice model, we consider one monolayer of two bulk-immiscible adsorbates A and B with
negative and positive misfit relative to the substrate, respectively. Simulations show that the
adsorbates partly self-organize into island or stripe-like patterns. We show how these structures
depend on the relative misfits, interaction, and concentration of components. The morphology is
quite different for phase separation and intermixing regimes.

1. Introduction

Today, many applications of components based on nanos-
tructures are emerging, among others e.g. quantum dots [1].
In order to further advance this field, and routinely produce
nanocomponents, a thorough understanding of mechanisms
governing the formation of nanostructures is required. The
key process of formation of nanostructures is self-organization.
Self-organization of quantum dots has been investigated us-
ing continuum theory; see e.g. [2]. However, understanding
of microscopic processes that are relevant for the formation
of nanostructured surfaces is important for the development of
novel electronic and magnetic devices. In this paper, we adopt
this view.

In metal epitaxy, the formation of surface alloys is of
particular interest. Often, elements which are bulk-immiscible
form alloys in a single atomic layer on the surface; see [3]
and references therein. A particularly interesting effect is the
formation of two-dimensional self-assembled ordered arrays
of dots, so-called droplets, or alternating rows of domains,
i.e. stripes [4–6]. Multi-component materials are of great
interest because they provide the possibility of preparing new
systems with unique properties. For example, self-assembled
lateral multilayers are found to exhibit a significant anisotropic
magnetoresistance [7]. On the other hand, it has also been

observed that instabilities can lead to dendritic growth [8], thus
reducing the applicability of the complex material.

Recently, we have evaluated the influence of two compet-
ing mechanisms, strain relaxation and kinetic segregation, on
island growth in a ternary system of two adsorbates with op-
posite misfit relative to the substrate [9]. In particular, we have
discussed the problem of island ramification observed in [8]
for CoAg/Ru(0001). However, we considered only a simpli-
fied model for simple cubic lattices.

In this paper, our focus is on pattern formation in metal
heteroepitaxy of two chemically different adsorbates which
form a thin alloy film on a given substrate. We study
equilibrium properties of two materials which we denote as
A and B, deposited on a suitable substrate S. We consider
an fcc(111) surface and investigate the morphology of a thin
alloy film depending on the misfit, inter-species interactions,
and concentration of components.

The problem of patterns in surface alloys has been
previously studied by different methods. For instance, Ozoliņš
et al employed hybrid atomistic–continuum models [10]. Ng
and Vanderbilt’s investigation of the formation of periodic
domains is based on continuum elasticity theory [11]. Clearly,
the applicability of macroscopic approaches on the nanoscale is
limited. Here we aim at the development of a relatively simple
approach, which facilitates a microscopic treatment that can
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be applied over a broad range of alloy systems. Simulations
of the model described below allow us to explore the specific
influence of external conditions and microscopic parameters on
specific properties of equilibrium patterns.

2. Model and methods

Computer simulations of homoepitaxial growth are often
based on discrete solid-on-solid models in which particles
can only move from one pre-defined binding site to another
one with rates controlled by diffusion barriers, or by variable
parameters [12]. In heteroepitaxy, adsorbate and substrate
lattice constants differ, and substantial strain is usually
generated. In order to describe effects of strain, a modified
approach is needed. A simple approximative way to proceed is
to modify the diffusion barriers via a dependence on the lattice
mismatch as e.g. in [13]. In a more realistic approach, one
should replace discrete models with pre-defined lattices using a
continuous approach in which contributions of elastic energy to
the total energy of the sample are considered. See e.g. [14, 15]
for an overview and discussion.

Here, we employ an off-lattice model which allows
for continuous particle positions. The atomistic structure
now naturally emerges from the symmetry of the particle
interactions used, and the symmetry of the substrate. This
type of model has been employed in previous investigations
of heteroepitaxial growth, at first in the simpler 1 + 1-
dimensional case, for instance in the context of strain relief
through misfit dislocations [16–19] or the so-called Stranski–
Krastanov growth mode [20]. The method was applied, also
to 2 + 1-dimensional systems, for the study of the effect of
strain on diffusion barriers in [21], however, for a simple
cubic lattice. Recently for the same lattice, a mixed adsorbate
system was studied in [9] and some aspects of the stability of
nanostructured alloy formation were explored.

We model a ternary system of adsorbate metals A, B and
substrate S. In order to keep the number of model parameters
small and to facilitate simulations at reasonable computational
cost, we consider fairly simple pairwise interactions. In the
following, Upq describes the potential energy contribution of
two interacting particles where the subscripts p, q ∈ {A, B, S}
specify which elements are involved.

We consider as a simple choice the Lennard-Jones
potential [22]

Upq(r) = E pq

[(σpq

r

)12 −
(σpq

r

)6
]

. (1)

Here, r is the distance of the two particles and the prefactor
E pq controls the depth of the potential, while the parameter σpq

determines the equilibrium distance of two isolated particles
r 0

pq = 21/6 σpq . Hence, the lattice constant in an undisturbed
monatomic system of, say, element p would be directly
proportional to σpp.

In this work, we do not aim at material specific
simulations; our goal is a qualitative understanding of
mechanisms that govern two-dimensional alloy formation in a
ternary system. We choose the values of parameters {E pq, σpq}
and the mismatch to represent several illustrative situations,

and we study the dependence of essential features of the pattern
formation on the values of the model parameters. In the
following, we use the briefer notation Eq = Eqq , σq = σqq .
Hence, e.g., the interaction strength within the substrate is
denoted by ES. The parameter σSS = σS defines the unit of
length in the following, i.e. σS = 1. Our model, as formulated
so far, allows us to treat different physical situations. In order
to present results for illustrative situations, we shall choose
particular values of some model parameters. With respect
to the misfit relative to the substrate, we study symmetric
configurations with

σA = 1 − ε and σB = 1 + ε (ε > 0) (2)

for the two adsorbates. In the general case, mutual interactions
of adatoms of different type, that is the parameters EA and EB,
are different, and also the interactions of particles of type A or
B with the substrate are different. However, we choose here
for the simplification equal energies EA = EB and fix their
magnitude relative to ES:

EA = EB = ES/6. (3)

Another simplification is that due to the relatively strong
interaction ES, diffusion hops of substrate particles and
interdiffusion of the substrate and adsorbate can be neglected.

Furthermore, in order to keep the number of free
parameters small, we follow a standard approach and set for
interactions involving different metals in the following way:

E pq = √
E p Eq and σpq = (σp + σq)/2

where p, q ∈ {A, B, S}. (4)

Note that as a result of our choice in the equation (3), the
interactions of different atom types with the substrate are the
same. In this paper, we do not study the effect of different
diffusion barriers for adatoms on the substrate. Instead, we
focus on the effect of interaction between different particle
types, which exerts the mainly control on the patterns obtained.
The relation (4) is used in all cases except for determination of
EAB; this parameter is varied independently. It is motivated by
the focus on the effect of interaction between different particle
types.

In the simulation, seven layers of the substrate fcc crystal
are prepared, displaying a single (111) surface. Throughout the
following, we consider hexagonal substrate cells with a side
length of 51 particles, reflecting the symmetry of the lattice.
The positions of all particles in the bottom three layers are
kept fixed throughout the simulations in order to stabilize the
crystal structure. The (111) surface is covered by a single layer
of adsorbate which contains a random mixture of A and B
particles. The concentrations of elements are fixed and denoted
as ηA and ηB with ηA + ηB = 1.

For the range of misfits ε considered here, we do not
observe the formation of dislocations. Hence, the continuous
spatial positions of all particles, including the adsorbate, are
in the vicinity of sites in an undisturbed substrate lattice. At
any given time, the precise location of all particles corresponds
to a local minimum of the total potential energy in the
system. In order to speed up the required calculations of
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Figure 1. Upper row: simulation results for Lennard-Jones interactions with EAB = 0.35 eV and ε = 0%, 5.5%, 7.5% (from left to right); the
particle concentrations are ηA = ηB = 0.5. The panels show 50 × 50 sections; the bigger B particles are shown in black. Lower row:
simulation results for EAB = 0.45 eV; all other values as above.

potential energies, we cut off the Lennard-Jones interactions
for distances larger than rcut = 3r 0

SS.
The system is driven towards thermal equilibrium at

temperature T by means of a rejection-free Monte Carlo
method [23, 24]. Since the precise path towards equilibrium is
of no interest here, we have implemented efficient dynamics,
which need not have a realistic microscopic counterpart;
however, it speeds up equilibration considerably. We consider
the non-local exchange of one A and one B particle on
the surface with no limitation on their distance. This
yields a significantly faster equilibration than local Kawasaki
dynamics [23].

The exchange is implemented as follows. Let us consider
particle A at site i , and particle B at site j . In every MC step,
the pair is selected according to the rates

ri→ j = e
�Hi −�H j

2kT (5)

which satisfy the detailed balance condition. Here, �Hx =
Hx(A) − Hx(B) denotes the energy difference of the systems
with an A and B particles at site x . In order to obtain, for
instance, Hx(A), an A particle is placed at the corresponding
site and all particles within a distance rcut are relaxed to
positions which correspond to a local minimum of the total
potential energy in the system. In order to avoid complications,
an exchange process is only permitted if the distance between
sites i and j is larger than rcut.

Proper binding states correspond to local minima of the
total potential energy with respect to the positions of all
particles in the system. After exchanging two adsorbate atoms
in the above described manner, it is necessary, in principle,
to fine-tune all particle coordinates in order to ensure that the

system resides precisely in such a local minimum. This can be
achieved by employing gradient based relaxation techniques.
For the sake of reducing computational costs, we apply
this relaxation only to particles within a maximum distance
rcut from both of the exchanged adsorbate atoms. Hence,
we take advantage of the effective cut-off of the Lennard-
Jones interaction at large distances, once more. Clearly, this
simplification can lead to inaccuracies. In order to prevent
them from accumulating over long simulation runs, we perform
a proper relaxation of the entire system after a given number of
MC steps (here 104).

3. Results

Our simulations show that the misfit has, as expected, a strong
effect on the structure of the surface alloy. Figure 1, upper
row, shows a series of surface snapshots after 105 MC steps
with different values of ε; the energies are ES = 3 eV,
EA = EB = 0.5 eV, EAB = 0.35 eV, and the temperature T is
set to 250 K and interactions are given by the 12, 6 Lennard-
Jones potential in (1).

Figure 1 shows results for adsorbate concentrations ηA =
ηB = 0.5; the smaller A particles with negative misfit are
drawn in gray and B particles with positive misfit in black.

In the case of zero misfit, ε = 0, the two different
adsorbates are completely separated into two regions, thus
minimizing the number of A/B nearest neighbor pairs with
unfavorable interaction energy EAB. But with increasing
misfit an increasing number of small islands are formed. The
formation of large islands of B particles becomes increasingly
unlikely as the conflict between the natural B–B spacing and

3
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Figure 2. Left: the averaged size s of islands consisting of B particles versus the absolute value of the misfit ε at the energies ES = 3 eV,
EA = EB = 0.5 eV, EAB = 0.45 eV and the particle concentrations ηA = ηB = 0.5. Right: the number of islands n versus the absolute value
of the misfit ε at the same parameters.

Figure 3. Surfaces in the model with a modified potential with exponents n = 10.5 and m = 5.5; equation (6). The parameters are
EAB = 0.40 eV, ε = 0%, 5.5%, 7.5% (from left to right), and ηA = ηB = 0.5.

the sites provided by the substrate would result in energetically
unfavorable particle locations. As a consequence, B particles
arrange in smaller clusters as the misfit increases.

Obviously, the interaction energy EAB also influences the
size of B islands. The smaller EAB, the more energy it costs
to realize boundaries between A and B domains and the larger
the clusters will be; see figure 1 (lower row) for typical surface
configurations with EAB = 0.45 eV. An even larger interaction
energy EAB > EA, EB would favor larger interfaces between
the two types. While the average island size becomes smaller
with increasing misfit, the number of islands in the system
increases (figure 2) as the adsorbate concentrations ηA and ηB

are fixed.
Potentials with exponents n �= 12 and m �= 6, in the form

Upq = E pq

[
m

n − m

(
ro

pq

r

)n

− n

n − m

(
ro

pq

r

)m]
(6)

with n > m [25], lead to very similar results to the Lennard-
Jones potential with n = 12, m = 6, but the computational
effort increases. As an example, figure 3 shows surfaces
from simulations with n = 10.5 and m = 5.5. Our
qualitative findings do not depend on the detailed properties
of the potential considered, and we expect them to persist for a
large variety of interactions.

The average island size changes also with the adatom
concentrations ηA, ηB. Figure 4 displays a system with an A

particle concentration of ηA = 0.7; the islands of B adatoms
are slightly smaller than in the case of ηA = ηB = 0.5.
In addition, the distance between B islands changes with
ηA

ηB
. As the diagram on the right-hand side indicates, small

concentrations ηA lead to big B islands, because the B particles
‘prefer’ to form several big islands rather than many small
islands. On increasing ηA, B islands become smaller and
smaller, but for high values the averaged size depends only
weakly on the concentration.

So far, we have considered the case EAB < EA, EB. If
the energy of interaction between the two adsorbates EAB is
larger than the interactions EA, EB, the situation changes and
completely new structures emerge. In this case, we observe
stripe-like structures, as shown in figure 5. Their form is
affected by the misfit: large misfits lead to more bendings
and fewer straight stripe sections, as a high misfit hinders the
formation of long chains of particles.

In figure 6 the normalized distribution of the number
of straight stripe lengths for miscellaneous misfits is plotted;
it confirms the optical impression. The figure shows the
frequency of straight parts of particle chains (sections without
a bend), independent of the direction of these straight lines.
Lower misfits result in more straight segments, in contrast to
higher values. This effect originates from the fact that, for
high positive misfits, particles which are jammed between two
neighbors of the same type ‘try’ to sidestep and build a bend.

4
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Figure 4. Left: simulation results for the Lennard-Jones potential with ES = 3 eV, EA = EB = 0.5 eV, EAB = 0.45 eV and ε = 4.5%; the
particle concentrations are set to ηA = 0.7 and ηB = 0.3. The panel shows a 50 × 50 section; the bigger B particles appear in black.
Right: the averaged size s of islands consisting of B particles versus the concentration of the smaller A particles ηA.

Figure 5. Surfaces observed for the Lennard-Jones potential with ES = 3 eV, EA = EB = 0.5 eV, EAB = 1.50 eV and ε = 1.0%, 4.0%, 7.0%
(from left to right); the particle concentrations are ηA = ηB = 0.5. The panels show 50 × 50 sections; the bigger B particles appear in black.

2 4 6 8 10 12 14

l

0

0.1

0.2

n re
l

ε = 3%
ε = 4%
ε = 5%
ε = 7%

Figure 6. Relative number nrel = n/ntotal of straight stripe lengths l
in the system with Lennard-Jones interactions; parameters as in
figure 5.

Hence, a meandering configuration has less strain and becomes
more favorable for increasing misfit.

The variation of the particle concentration from a low to a
high value leads to an interesting evolution of patterns. This is
illustrated in figure 7, which shows the results of simulations
for three different concentrations of B particles, energy EAB =
0.75 eV, misfit of 1% and temperature T = 250 K. At
low concentrations of the bigger B adatoms, each of them is
surrounded by neighbors of A type only. For slightly larger ηB,
short linear clusters of B atoms begin to form, and for ηA ≈ ηB

we observe stripe formation throughout the system; cf figure 7
(center panel). Finally, a high concentration of B particles leads
to the formation of patterns which are similar to those for the
case of small ηB, but with the roles of A and B exchanged. In
addition, one can recognize the formation of line defects in the
right and left panels dominated by particles of different types.

4. Discussion

Our model allows systematic and relatively fast studies of
equilibrium patterns in strained alloys and the dependence
of their features on physical parameters. In order to draw
correct conclusions, it is important to know whether the
observed configurations are close to equilibrium. We aim
at achieving equilibrated configurations by employing the
non-local updating procedure and by performing a sufficient
number of simulation steps. An important question in this
context is how many MC steps are required to achieve this
goal. To this end, we have inspected properties of the surface
in the course of the on-going simulation. Figure 8 shows, as
an example, the evolution of a system with EAS = 0.45 eV
and ε = 4.5% with increasing number of KMC steps. At the
beginning, the adsorbate particles are arranged randomly, but
for this set of model parameters, equilibrium is reached very
fast and thereafter, only a few small changes affect the surface
structures.

5
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Figure 7. Simulation results for the Lennard-Jones potential with energies ES = 3 eV, EA = EB = 0.5 eV, EAB = 0.75 eV and misfit
ε = 1.0%; the concentrations of B particles are ηB = 0.3, 0.5, 0.7 (from left to right). The panels show 50 × 50 sections; the bigger B
particles appear in black.

Figure 8. Simulation results for Lennard-Jones interactions with ES = 3.00 eV, EA = 0.50 eV, EAB = 0.45 eV, and ε = 4.5%: initial
configuration and the configurations after 20 × 103 and after 140 × 103 MC steps (from left to right). The temperature is set to T = 250 K.
The particles with positive misfit are drawn in black.

The optical impression is confirmed by the plots in
figure 9. Already, after a few thousand steps, the average
island size and the number of islands are both roughly constant
and the graphs display only a few fluctuations. In the case of
EAS = 0.35 eV and ε = 5.5%, which is also displayed in
figure 9, the systems needs more steps to attain equilibrium.
In the initial phase of the simulation, many steps are required
to form the large islands typical for this set of parameters;
however, after 100 × 103 MC steps the number of islands
and their average size have become constant with almost no
fluctuations due to the large island sizes. We investigated the
dynamics of equilibration in more detail, and we found that
the dependence of the size of islands consisting of B particles
on the number of MC steps can be well fitted by a power law
with the exponent approximately 0.2 in the example setting of
EAB = 0.35 eV and ε = 5.5%.

In almost all our simulations the equilibrium is reached
after at most 105 steps and the simulation can be stopped.
However, in most cases the equilibrium had been reached even
earlier.

5. Conclusions

In this paper, we have demonstrated that our off-lattice KMC
model of a surface ternary system allows systematic and
flexible investigation of equilibrium patterns in 2D strained
alloys. In order to simulate the formation of structures, we
use a rejection-free Monte Carlo method for the model in
which the particles have continuous coordinates and adsorb

0 50 100 150

MC steps / 10
3
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40
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AB

 = 0.35 eV
E

AB
 = 0.45 eV

Figure 9. The average island size s of islands consisting of B
particles versus the number of MC steps for EAB = 0.45 eV,
ε = 4.5% and EAB = 0.35 eV, ε = 5.5%.

heteroepitaxially at an fcc(111) surface. An interaction
potential of the Lennard-Jones form is employed. Our model
can be generalized to a multilayer situation. In this case we
expect a richer set of possible surface patterns, as has been
seen, for example, in Cu/Ru(0001) heteroepitaxy [26].

We have shown how equilibrium patterns change
with misfit, energies of interaction between species, and
concentration of components. We investigated two basically
different situations: phase separation and a mixing regime.

In the case of EAB < EA, EB, the adsorbed layer of A
and B particles has the pattern formed by islands composed
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from bigger B particles inserted inside a film of smaller A
particles. The size of islands depends on the misfit ε and
the interaction energy EAB. The average size of islands
decreases with increasing misfit and interaction energy. Higher
values of both parameters lead to the formation of many small
islands, in contrast to the case for smaller values, where
only a few big islands are observed. The variation of the
adatom concentrations changes the mean island size: at small
concentrations of A particles the islands of B particles are
quite big, and they become smaller and smaller with increasing
concentration ηA. But for high ηA the averaged size depends
only weakly on the concentration. This behavior is similar to
the one observed for simple cubic lattices (cf figures 4 and 5
in [9]). It is furthermore robust against variation of the form of
the interaction potential.

If EAB is larger than EA, EB, stripes with a large interface
between the two adsorbates arise. In this case the misfit affects
the number of bendings and straight sections in these stripes.
At low concentrations ηB we observe B islands surrounded
by A particles. Intermediate concentrations result in the
formation of stripes, while for large ηB an ‘inverted’ island
pattern is observed with the roles of A and B exchanged.
Qualitatively, the behavior resembles the evolution from 2D
droplets to inverted 2D droplets as recently observed in self-
assembled domain structures during deposition of Pb on
Cu(111) [4, 5, 27].

Our model can be straightforwardly applied to the
study of a variety of physical situations not elaborated
in this paper, but characterized by different values of
model parameters, for example, non-symmetric misfit,
non-symmetric adsorbate–substrate interaction, or different
adsorbate–adsorbate interactions.

It would be of interest to evaluate the applicability of the
approach presented for studying alloy patterns on substrates
with different lattice structure, e.g. fcc(110), or for calculation
of phase diagrams as a function of adsorbate concentration
or the temperature. The model can also be generalized to
allow study of strained 3D alloys if inter-layer processes are
included.
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